

Characterization and Mutagenicity of Smoke from Smoldering and Flaming Combustion of Peat and Red Oak Biomass Fuels

Yong Ho Kim¹, Sarah Warren¹, Todd Krantz¹, Charly King¹, Richard Jaskot¹, Michael Hays², Matthew Landis³, Mark Higuchi¹, David DeMarini¹, M. Ian Gilmour¹

¹NHEERL, ²NRMRL, and ³NERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA

Yong Ho Kim I kim.yongho@epa.gov I 919-541-2255

Background

Wildland fire smoke depending on fuel types and combustions

Health impacts of wildland fire smoke

- Wildland fire smoke is a hazardous mixture of gaseous emissions and particulate
- > It is not well understood if the health impacts of wildland fire smoke are influenced by fuel types or combustion conditions.

Research Hypothesis

> Toxicity of smoke emissions from wildfires varies depending on the type of fuel, combustion conditions, and resultant particle chemistry.

Materials & Methods

Tested biomass fuels and their distribution in the United States

- ➤ Red oak (obtained from the Air Pollution Prevention and Control Division at the US EPA)
- > Peat (collected from the coastal plain of the eastern North Carolina, ARNWR) ➤ Ponderosa pine needles (provided by the Missoula Fire Sciences Laboratory)
- > Lodgepole pine (provided by the Missoula Fire Sciences Laboratory)
- Eucalyptus (purchased from a local supplier)

Materials & Methods

Biomass combustion and smoke sampling system

Flow diagram of the biomass combustion study

Results

Characterization of Biomass Smoke

Table 1: Characteristics of biomass smoke emitted from the tube furnace system

Fuel type Combustion condition MCE (%)¹)		Red oak		Peat		Pine needles		Pine		Eucalyptus	
		Smoldering	Flaming	Smoldering	Flaming	Smoldering	Flaming	Smoldering	Flaming	Smoldering	Flaming
		73±2	98.6±0.3	71±2	98±1	83±1	98±1	76±2	97±3	63±3	98±
Conc.	CO (ppm)	793±104	68±16	1,385±468	122±51	602±117	119±34	766±85	165±137	1,201±184	128±7
	CO ₂ (ppm)	2,167±385	4,867±352	3,425±1,292	4,750±261	3,067±664	6,967±1,490	2,458±415	6,808±2,272	2,058±231	6,667±91
	PM (mg/m ³)	973	5	488	5	624	18	1,050	15	1,418	1:
EF ²⁾	CO (g/kg fuel)	223	16	299	29	158	20	198	28	280	22
	CO ₂ (g/kg fuel)	957	1,806	1,161	1,785	1,268	1,797	999	1,785	755	1,79
	PM (g/kg fuel)	144	0.6	55	0.6	86	1.6	143	1.3	174	1.

2) Emission factor (EF) t (g/kg) = (mass of carbon emitted as tx molecular weight tx 1000) / (molecular weight carbon x fuel carbon fraction x total mass of carbon)

Results

Figure 1: Emission factors (EFs) of biomass smoke as a function of modified combustion efficiency (MCE)

All EFs (except for the peat smoke from smoldering) were positively correlated with modified combustion efficiency (MCE).

Figure 2: Comparison of emission factors (EFs) and modified combustion efficiency (MCE) with field measurements

> The combustion system presented is able to successfully simulate various field

Characterization of Biomass Smoke Condensates

Figure 3: Chemical mass fraction of the biomass smoke condensates (BSC)

- ➤ BSC mass collected from smoldering was up to 47 times higher than that from flaming combustion.
- > Organic carbon mass in the smoldering BSC was up to 39 times higher than that in the flaming BSC.

Figure 4: Organic carbon mass fraction of the biomass smoke condensates (BSC)

Mutagenicity of Biomass Smoke Condensates

Figure 5: Mutagenicity of the biomass smoke condensates based on **Equal Mass**

Results

Flaming emissions were more mutagenic on an equal mass basis.

Figure 6: Mutagenicity of the biomass smoke condensates based on **Emission Factor**

> **Smoldering emissions** were more mutagenic on an emission factor basis.

Figure 7: Comparison of mutagenicity emission factors from various combustions

➤ The mutagenicity emission factors for **smoldering emissions** were ~20 times and ~4 times greater than those from diesel engine and inefficient open-burning sources (e.g., three-stone fire or wood fireplaces), respectively.

Results

Lung Toxicity of Biomass Smoke Condensates

Figure 8: Lung toxicity of the biomass smoke condensates

smoldering emissions could be more toxic on an emission factor basis

Conclusions

- > Type of fuel and combustion conditions have dramatic differences in emission characteristics, mutagenicity, and lung toxicity.
- > The combustion and sample-collection system presented has great utility for characterization of simulated wildfire emissions.
- > The system presented can be employed for health risk assessment from inhalation exposure to wildfire smoke.
- > Health impacts of wildfire smoke can be assessed on an equal-mass fuel consumption basis or equal-mass PM exposure basis.

Future Work

Subchronic inhalation exposure study

